Evolutionary relationships among *Massospora* spp. (Entomophthorales), obligate pathogens of cicadas

Angie M. Macias, David M. Geiser, Jason E. Stajich, Piotr Łukasik, Claudio Veloso, DeAnna C. Bublitz, Matthew C. Berger, Greg R. Boyce, Kathie Hodge, and Matt T. Kasson

INTRODUCTION

The Entomophthorales (Zoopagomycota) are among the most important arthropod-destroying fungi (Spatafora et al. 2016). Many North American Entomophthorales were first described by Thaxter (1888) more than a century ago. Well-known examples include *Entomophthora muscae*, causal agent of “summit disease” of numerous fly genera (Fresenius 1856; Elya et al. 2018), and *Entomophaga maimaiga*, a virulent pathogen and biological control agent of gypsy moth (Soper et al. 1988; Hajek et al. 1990).

Due to the ephemeral nature, obligate lifestyle, and large genome size of the Entomophthorales, these fungi are grossly underrepresented in phylogenetic studies (Spatafora et al. 2016; Gryganskyi et al. 2017). Only recently have a select few been formally investigated using molecular phylogenetics (Gryganskyi et al. 2012, 2013), including the recently described *Arthropaga myriapodina*, a lethal summit disease pathogen of polydesmid millipedes (Hodge et al. 2017), and *Massospora*, an active host transmission pathogen of numerous cicada species (Boyce et al. 2019). In total, the
Entomophthorales includes some 12 accepted genera with 237 species, including Massospora with 13 established species (Index Fungorum and MycoBank).

Massospora was first described anecdotally by Dr. Joseph Leidy (1851), who noted an undescribed fungal disease of periodical cicadas in the eastern USA: “[Magi]cicada septendecim was subject to a fungous disease” and observed that “the posterior part of the abdomen … in several instances [was] filled with a mass of oval spore-like bodies” (Leidy 1851). Massospora was formally established by Peck (1879) with the description of M. cicadina from a periodical cicada (Magicicada septendecim) collected in New York, USA, in 1877. Following Peck’s description, Thaxter (1888) recognized Massospora as a member of the Entomophthorales. Research on Massospora gained momentum in the 20th century with spore development studies (Speare 1921; Goldstein 1929) and the description of 10 new species in the Western Hemisphere (Ciferri et al. 1957; Soper 1963, 1974), two species from Australia and Afghanistan (Soper 1981), plus undescribed Massospora species from Platycleura sp. (Kobayashi 1951) and Meimuna sp. (Ohbayashi et al. 1999) in Japan. Today, Massospora includes more than a dozen obligate, sexually transmissible, pathogenic species that attack at least 24 cicada species worldwide (Soper 1963, 1974, 1981; Cooley et al. 2018) (TABLE 1). Nearly all extant Massospora species are associated with a single cicada genus, with two exceptions. Massospora cicadettiae is reported from Plerapsalta incipiens, Chelapsalta puer, and Cicadetta spp. (TABLE 1). M. platypedae/M. levispora, based on existing phylogenetic data, represent a single species infecting two genera of annual cicadas, Platypedea sp. and Okanagana sp. (Boyce et al. 2019). Generally, specimens of Massospora have been identified based on the cicada host they are found on, but this method of identification has proven unreliable given the recent finding that M. levispora and M. platypedae constitute a single species that occupies a broader geographic and host range than previously reported (Boyce et al. 2019). Until the host associations and fungus names are confirmed with detailed molecular studies, identifications based solely on host associations should be viewed with skepticism.

The life cycles of individual Massospora species are closely tied to the life cycle of the cicada host. Mature cicada nymphs are believed to be infected by resting spores encountered underground during construction of their vertical emergence burrows (Soper et al. 1976a). These nymphs then emerge, eclose into adults, and over a period of days develop infections in their abdomen. These infections become more conspicuous as the fungus destroys the cicada’s abdominal intersegmental membranes, inciting a progressive sloughing off of sclerites that reveals a large fungal mass (FIG. 1). Conidia are passively disseminated during mating attempts or flights, or possibly in crowded settings where high densities of cicadas promote close contact (Soper 1963; Cooley et al. 2018). Cicadas infected by conidia develop secondary infections (Soper et al. 1976b; Cooley et al. 2018), resulting in the production of resting spores inside cicada hosts. These resting spores are incorporated back into the soil to infect new cohorts of cicadas as they emerge in later years (Soper et al. 1976a).

<table>
<thead>
<tr>
<th>Species</th>
<th>Authority</th>
<th>Reference</th>
<th>Published cicada hosts</th>
<th>Published locals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massospora carinetae</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Carineta sp.</td>
<td>Sao Paulo, Brazil; Misiones Province, Argentina</td>
</tr>
<tr>
<td>Massospora cicadettiae</td>
<td>R.S. Soper 1981</td>
<td>Soper 1981</td>
<td>Plerapsalta incipiens, Chelapsalta puer, Cicadetta spp.</td>
<td>New South Wales, Queensland, Tasmania, Australia</td>
</tr>
<tr>
<td>Massospora cicadina</td>
<td>Peck 1878</td>
<td>Peck 1879</td>
<td>Magicicada spp. (all)</td>
<td>Eastern USA (entire range of the cicada genus)</td>
</tr>
<tr>
<td>Massospora diminuta</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Cicada sp.</td>
<td>Amapa, Brazil</td>
</tr>
<tr>
<td>Massospora dorisiana</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Dorisiana semilata</td>
<td>Paraiba, Brazil</td>
</tr>
<tr>
<td>Massospora fidiciniae</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Fidicina sp.</td>
<td>Guaimas District, Honduras; Chiapas, Mexico</td>
</tr>
<tr>
<td>Massospora levispora</td>
<td>R.S. Soper 1963</td>
<td>Soper 1963</td>
<td>Okanagana rimoso, O. sperata</td>
<td>California, USA; Ontario, Canada</td>
</tr>
<tr>
<td>Massospora ocyptes</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Guyalna bonoerensis</td>
<td>Guayalguaychu, Argentina</td>
</tr>
<tr>
<td>Massospora pahariae</td>
<td>R.S. Soper 1981</td>
<td>Soper 1981</td>
<td>Paharia casyapae</td>
<td>Paghman District, Afghanistan</td>
</tr>
<tr>
<td>Massospora platypedae</td>
<td>R.S. Soper 1974</td>
<td>Soper 1974</td>
<td>Platypedea putnami</td>
<td>California, Utah, New Mexico, USA</td>
</tr>
<tr>
<td>Massospora spinosa</td>
<td>Cif. A.A. Machado & Vittal 1956</td>
<td>Soper 1974</td>
<td>Quesada gigas</td>
<td>Paraiba, Brazil; Nuevo Leon, Mexico; Caracas, Venezuela</td>
</tr>
</tbody>
</table>

Note. Bold font indicates the species used in this study.

*Soper is not sure whether these collections represent M. diceroproctae or a novel Massospora species, as they were found far from the type locality (Soper 1974).
the Entomophthorales, including several cases of summiting behaviors and active host transmission (Roy et al. 2006; Hughes et al. 2016; Gryganskyi et al. 2017; Hodge et al. 2017; Boyce et al. 2019). The rarer of these two transmission behaviors, active host transmission (AHT), involves infected living hosts that directly transmit spores to new hosts (Roy et al. 2006). AHT behavior in Massospora is thought to be chemically induced (Boyce et al. 2019) and includes hypersexual behavior where infected male cicadas mimic female-specific behaviors to attract copulation attempts from other males (Cooley et al. 2018). Massospora and Strongwellsea, a fly pathogen, are the only two genera where all species are known to induce AHT behavior in their hosts, although AHT has also been reported in select species of Entomophthora (E. erupta and E. thripidum) and Entomophaga (E. kansana) (Roy et al. 2006). However, the identity and phylogenetic placement of these latter species have not been molecularly resolved (Gryganskyi et al. 2012, 2013). Given this taxonomic uncertainty coupled with the occurrence of both AHT and summit disease in Entomophthora and Entomophaga, the evolutionary history of AHT among members of the Entomophthoraceae should be further investigated (Boyce et al. 2019). More specifically, is AHT the ancestral state for the Entomophthoraceae or has it evolved several times among Massospora, Strongwellsea, Entomophthora, and Entomophaga?

Multilocus phylogenetics using few loci can serve as a rapid, cost-effective screening tool to inform further research using genomic, transcriptomic, and metabolomic approaches. Ultimately, genomics-based approaches offer superior phylogenetic resolution, but Entomophthorales genomes are difficult to obtain for several reasons. Compared with other fungi, some Entomophthorales genomes are massive in size, including the publicly available Entomophthora muscae genome (600 Mb, National Center for Biotechnology Information [NCBI] PRJNA479887) and Zoophthora radicans genome (655 Mb, Joint Genome Institute [JGI] ATCC 208865) (Nordberg et al. 2014; Elya et al. 2018). Additionally, many Entomophthorales are unculturable; therefore, impure and potentially degraded environmental samples must be used. Phylogenetic studies can also help populate NCBI sequence data repositories, which are significantly underpopulated for members of the

Figure 1. Photographs of cicada hosts (top), conidia (middle), and resting spores (bottom) of the Massospora species used in this study. Cicada hosts, from left to right: Magicicada septendecim, Okanagana rimosa, Platypedia putnami, Diceroprocta semicincta, Tettigades sp. Images are not to scale.
Entomophthoraceae. In total, GenBank’s nucleotide sequence repository has 616 DNA sequences for the family, excluding genomes, representing only about 20% of described species. More than 45% of these sequences are from just three taxa: Pandora neaphidids, Entomophthora muscae sensu lato, and Zoophthora radicans. Additionally, 30% of the 616 sequences are nuclear rDNA ITS1-5.8S-ITS2 (internal transcribed spacer [ITS] barcode) or partial nuclear 18S rRNA gene sequences, which are not suitable for accurate phylogenetic analyses (Tang et al. 2007; Schoch et al. 2012; Demirel 2016).

In this study, we used molecular phylogenetics and morphology to further investigate three findings reported by Boyce et al. (2019): (i) Massospora is monophyletic; (ii) M. levispora and M. platypediae are not genealogically exclusive; and (iii) M. levispora and M. platypediae are not distinguishable based on spore measurements.
MATERIALS AND METHODS

Sample collection and DNA extraction.—The following designations are used throughout: *M. cicadina* = *Mc*, *M. diceroproctae* = *Md*, *M. levispora* = *Ml*, *M. platypediae* = *Mp*, and *M. tettigatis* = *Mt*.

Infected cicadas were obtained from various locations and collectors (TABLE 2). Samples from each collector were stored differently, with some samples stored dry at room temperature, some frozen in RNAlater (ThermoFisher Scientific, Waltham, Massachusetts) or 70–95% ethanol, and some frozen dry immediately following collection (see “Sample Storage” in SUPPLEMENTARY TABLES 1 and 2). The fungal plug on each infected cicada was sampled using a sterile...
scalpel or by centrifuging a solution of loose spores into a pellet. DNA was extracted using a modified Wizard kit (Short et al. 2015). Samples were macerated in 1.5-mL microcentrifuge tubes (Eppendorf, Hamburg, Germany) with 600 µL of Nuclei Lysis Solution (Promega, Madison, Wisconsin) and incubated at 65 C for 30 min, vortexing for 15 min. After cooling briefly, 200 µL of Protein Precipitation Solution (Promega) was added, and samples were vortexed vigorously for 10 s. Then, samples were centrifuged for 3 min at 17 562 × g, and the supernatant was collected and moved to fresh 1.5-mL tubes with 600 µL of 99.9% isopropanol. Tubes containing the protein pellet were discarded. Sample tubes containing isopropanol were gently inverted several times and centrifuged again for 1 min at 17 562 × g. The supernatant was discarded, leaving a DNA pellet behind. Tubes were then loaded with 600 µL of 70% ethanol and centrifuged for 1 min at 17 562 × g. Supernatant was again discarded, and the DNA pellets were left to dry at room temperature for 20–30 min. Finally, the DNA was resuspended in 100 µL of warmed (65 C) Elution Buffer (Alfa Aesar, Ward Hill, Massachusetts) and stored at −20 C.

PCR and sequencing.—We targeted sequencing of the D1–D2 domains of nuclear 28S rRNA gene (28S), the V6–V9 regions of nuclear 18S rRNA gene (18S), elongation factor 1 alpha-like (EFL), and beta-tubulin (BTUB) for each sample listed in TABLE 2. We used existing data from GenBank for six reference strains. Additionally, six gene sequences were extracted from two assembled metagenomes from Boyce et al. (2019). Primer names, sequences, and full polymerase chain reaction (PCR) protocols are listed in SUPPLEMENTARY TABLE 3. The PCR components are as follows: 12.5 µL MyTaq Master Mix (Bioline, London, United Kingdom), 10 µL molecular-grade water (G-Biosciences, St. Louis, Missouri), 1 µL (10 µM in IDT [1× TE], pH 8.0) each of forward and reverse primers (IDT, Coralville, Iowa), and 1 µL of DNA template for a final reaction volume of 25.5 µL. PCR products were visualized via gel electrophoresis on a 1.5% w/v agarose (Amresco, Cleveland, Ohio) gel with 0.5% ethylenediaminetetraacetic acid [EDTA] buffer (Amresco). SYBR Gold (Invitrogen) was used as the nucleic acid stain, and bands were visualized on an ultraviolet (UV) transilluminator (Bio-Rad, Hercules, California). Prior to sequencing, PCR products were purified using ExoSAP-IT (ThermoFisher): 2.2 µL of ExoSAP and 6 µL of PCR product in a two-step reaction of 15 min at 37 C, followed by 15 min at 80 C. Purified products were Sanger sequenced (Eurofins, Luxembourg, Luxembourg) with the same primers used for PCR.

Sequences generated during this study are deposited in GenBank (TABLE 2).

Alignments, model selection, and phylogenetic analyses.—Chromatograms were quality-checked using default parameters, clipped, and manually corrected in CodonCode Aligner 5.1.5. Each gene was aligned separately using MAFFT (Katoh and Standley 2013) on the Guidance2 server (http://guidance.tau.ac.il/ver2/; Landan and Graur 2008; Sela et al. 2015), and individual residues with Guidance scores <0.5 were masked. An intron in 28S (positions 299–478) was deleted. Alignments are available at: http://purl.org/phylo/treebase/phylows/study/TB2:S25818.

Nucleotide substitution models were chosen using corrected Akaike information criterion (AICc) scores in Model Test in MEGA 7.0.16 (Kumar et al. 2016). Alignments of each individual gene (28S, EFL, and BTUB), and a concatenated alignment of the three genes, were used in a maximum likelihood (ML) analysis (RAxML 8.2.12; Stamatakis 2014), a maximum parsimony (MP) analysis (PAUP* 4.0a build 166; Swofford 2002), and a Bayesian inference (BI) analysis (MrBayes 3.2.5; Ronquist et al. 2012), for a total of 12 analyses. The default parameters of each software package were used, unless otherwise noted (see code and notes in SUPPLEMENTARY FILE 1). In brief, for ML analyses, an appropriate model was chosen, partitions were applied (for each gene in the concatenated analysis only), 1000 bootstrap replicates were used, and the best-scoring tree was identified and bootstrapped in a single run. For MP analyses, a heuristic search with tree bisection reconnection (TBR) swapping and 1000 bootstrap replicates was used. For BI analyses, MrBayes was allowed to select a substitution model for each data set, and rates were set based on results from Model Test. One cold chain and three heated chains were used for each run, and the first 25% of generations were discarded as burn-in. Each run was set for 1 million generations, and no additional generations were needed because the standard deviation of split frequencies fell below 0.01. Finally, runs were checked for convergence in Tracer 1.7.1 (Rambaut et al. 2018).

One additional tree was generated: a single-gene 18S tree using the same isolates as the 3-gene data set, which was generated using all three methods of phylogenetic inference (see detailed methods above).

All resulting trees are available at: http://purl.org/phylo/treebase/phylows/study/TB2:S25818. Trees were viewed and prepared for publication using FigTree 1.4.4 (Rambaut 2017) and Inkscape 0.92.2 (https://www.inkscape.org/).
<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Strain</th>
<th>Source</th>
<th>Host</th>
<th>Host sex</th>
<th>Brood</th>
<th>Year</th>
<th>Location</th>
<th>Collector</th>
<th>28S</th>
<th>18S</th>
<th>EFL</th>
<th>BTUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massospora</td>
<td>cicadina</td>
<td>GK2</td>
<td>Reference &</td>
<td>Magicicada</td>
<td>F</td>
<td>23</td>
<td>2015</td>
<td>Indiana</td>
<td>G. Kritsky</td>
<td>MH483015</td>
<td>MH483019</td>
<td>MT044283</td>
<td>MT044293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Novel</td>
<td>tredecassini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>cicadina</td>
<td>MC17</td>
<td>Novel</td>
<td>Magicicada</td>
<td>F</td>
<td>5</td>
<td>2016</td>
<td>West</td>
<td>Kasson Lab</td>
<td>MN706572</td>
<td>MN706548</td>
<td>MT044280</td>
<td>MT044292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cidentin</td>
<td>septendecim</td>
<td></td>
<td></td>
<td></td>
<td>Virginia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>cicadina</td>
<td>MC7</td>
<td>Novel</td>
<td>Magicicada</td>
<td>M</td>
<td>5</td>
<td>2016</td>
<td>Virginia</td>
<td>Kasson Lab</td>
<td>MN706575</td>
<td>MN706551</td>
<td>MT044277</td>
<td>MT044294</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cassini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ohio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>cicadina</td>
<td>MC17</td>
<td>Novel</td>
<td>Magicicada</td>
<td>F</td>
<td>23</td>
<td>2015</td>
<td>Indiana</td>
<td>G. Kritsky</td>
<td>MH483015</td>
<td>MH483019</td>
<td>MT044283</td>
<td>MT044293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cidentin</td>
<td>cidentin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>diceroproctae</td>
<td>DB128</td>
<td>Novel</td>
<td>Diceroprocta</td>
<td>M</td>
<td>N/A</td>
<td>2016</td>
<td>West</td>
<td>Kasson Lab</td>
<td>MN706572</td>
<td>MN706548</td>
<td>MT044280</td>
<td>MT044292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp.</td>
<td>semicincta</td>
<td></td>
<td></td>
<td></td>
<td>Virginia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>levispora</td>
<td>ML2</td>
<td>Novel</td>
<td>Okanagana</td>
<td>F</td>
<td>N/A</td>
<td>1998</td>
<td>Missouri</td>
<td>J. Cooley</td>
<td>MH483017</td>
<td>MH483021</td>
<td>—</td>
<td>MT044295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rimosata</td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>platypediae</td>
<td>CA3</td>
<td>Reference</td>
<td>Platypedia</td>
<td>M</td>
<td>N/A</td>
<td>2018</td>
<td>California</td>
<td>M. Berger</td>
<td>MN706583</td>
<td>MN706558</td>
<td>MT044273</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>putnari</td>
<td>putnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>platypediae</td>
<td>NM2</td>
<td>Reference</td>
<td>Platypedia</td>
<td>M</td>
<td>N/A</td>
<td>2017</td>
<td>New</td>
<td>M. Berger</td>
<td>MH483016</td>
<td>MH483020</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>putnari</td>
<td>putnari</td>
<td></td>
<td></td>
<td></td>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>platypediae</td>
<td>NM2</td>
<td>Reference</td>
<td>Platypedia</td>
<td>M</td>
<td>N/A</td>
<td>2017</td>
<td>New</td>
<td>M. Berger</td>
<td>MN706584</td>
<td>MN706559</td>
<td>MT044291</td>
<td>MT044296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>putnari</td>
<td>putnari</td>
<td></td>
<td></td>
<td></td>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>tettigatis</td>
<td>PL373</td>
<td>Novel</td>
<td>Tettigades</td>
<td>F</td>
<td>N/A</td>
<td>2014</td>
<td>Chile</td>
<td>P. Lukasik</td>
<td>MN706586</td>
<td>MN706561</td>
<td>MT044270</td>
<td>MT044297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sp.</td>
<td></td>
</tr>
<tr>
<td>Massospora</td>
<td>tettigatis</td>
<td>PL504.2</td>
<td>Novel</td>
<td>Tettigades</td>
<td>M</td>
<td>N/A</td>
<td>2014</td>
<td>Chile</td>
<td>P. Lukasik</td>
<td>MN706586</td>
<td>MN706560</td>
<td>MT044269</td>
<td>MT044298</td>
</tr>
<tr>
<td>Arthropaga</td>
<td>myriapodina</td>
<td>Arsp1</td>
<td>Novel</td>
<td>Xystochir</td>
<td>N/A</td>
<td>2019</td>
<td>California</td>
<td>S. Wolny</td>
<td>MN706590</td>
<td>MN706566</td>
<td>MT044290</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Entomophthora</td>
<td>muscae</td>
<td>ARSEF3074/</td>
<td>Reference</td>
<td>Delia</td>
<td>N/A</td>
<td>1990</td>
<td>New York</td>
<td>R. Carruthers,</td>
<td>NG_027647</td>
<td>AY635820</td>
<td>DQ725343</td>
<td>KF848865</td>
<td></td>
</tr>
<tr>
<td>Furia</td>
<td>ithacensis</td>
<td>FMD2</td>
<td>Novel</td>
<td>Rhago mystaceus</td>
<td>N/A</td>
<td>2018</td>
<td>Maryland</td>
<td>S. Krasno</td>
<td>MN706588</td>
<td>MN706564</td>
<td>MT04288</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Pandora</td>
<td>formicar</td>
<td>v1</td>
<td>Transcription</td>
<td>Formica</td>
<td>N/A</td>
<td>—</td>
<td>—</td>
<td>Denmark</td>
<td>GCRD01001006†</td>
<td>GCRD01001011†</td>
<td>GCRD01019113†</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Pandora</td>
<td>neoaphidis</td>
<td>ARSEF7939</td>
<td>Reference</td>
<td>Microphoma</td>
<td>N/A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>GU132790</td>
<td>EU267193</td>
<td>GU132771</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Zoophthora</td>
<td>radicans</td>
<td>Voucher45</td>
<td>Reference</td>
<td>Rutella</td>
<td>N/A</td>
<td>—</td>
<td>—</td>
<td>Argentina</td>
<td>MG256490</td>
<td>MG256297</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Note. Reference sequences are underlined, all others are novel.

* denotes NCBI Whole Genome Shotgun Sequencing project accession numbers that contain the locus of interest.
† denotes NCBI Transcriptome Shotgun Assembly accession numbers that contain the locus of interest.
Morphological study.—To examine overall spore morphology, a portion of select fungal plugs (n = 63) was harvested with a sterile scalpel and mounted on a slide in lactophenol or lactophenol + cotton blue for examination with light-field microscopy. Coverslips were fastened with nail polish to allow slides to be archived and reexamined when necessary. Slides were examined and photographed using a Nikon Eclipse E600 compound microscope (Nikon Instruments, Melville, New York) equipped with a Nikon Digital Sight DS-Ri1 high-resolution microscope camera. A total of 25 spores from each slide mount were measured using Nikon NIS-Elements BR3.2 imaging software. For conidial samples, the lengths and widths of 25 conidia were recorded, and for resting spore samples two perpendicular diameter measurements (including the epispore) were taken and averaged for 25 resting spores. Conidial measurements were taken from 45 isolates: *Mc* = 12, *Md* = 4, *Ml* = 8, *Mp* = 20, and *Mt* = 1. Resting spore measurements were taken from 18 isolates: *Mc* = 9, *Md* = 2, *Ml* = 1, *Mp* = 2, and *Mt* = 4. Raw spore measurements are available in SUPPLEMENTARY TABLE 1.

Spore measurement data were analyzed using the packages **DPLYR** (Wickham et al. 2019), **GGPLT2** (Wickham 2016), **CAR** (Fox et al. 2012), **USERFRIENDLYSCIENCE** (Peters et al. 2018), and **GPLOTS** (Warnes et al. 2019) in R 3.6.1 (R Core Team 2019). Normality was assessed using density plots and the Shapiro-Wilk test, and equality of variance was assessed using Levene's test and the Fligner-Killeen test. Analyses of variance (ANOVAs) and Welch's ANOVAs (where appropriate) were performed to check for differences in spore measurements across species, and Tukey’s and Games-Howell multiple-comparison post hoc tests (respectively) were used to identify the significant pairwise differences. A P-value <0.05 was considered significant for all analyses. Reported P-values are Bonferroni-corrected where appropriate. R code and summarized outputs are available in SUPPLEMENTARY FILE 1.

To examine the number and position of nuclei in the conidia of representative *M. levispora* and *M. platypediae* specimens, spores from archived (dried or alcohol-preserved) samples were mounted in hematoxylin for observation using a Nikon Eclipse E600 phase-contrast light microscope (Nikon Instruments) with “PH3” and “A” filters at 100× magnification. Specimens examined for *Ml* included ML6, ML7, and ML10, all from Michigan, and for *Mp*, NM4 and NM6 from New Mexico, CA2 from California, and CO1 and CO11 from Colorado (SUPPLEMENTARY TABLE 1). Nuclei were discernible in five *Mp* and three *Ml* specimens; other specimens had too few conidia, were in a phase of the cell cycle where the nuclei are not distinct, and/or were not receptive to staining due to age or degradation of spores. Even for samples whose conidia were receptive to staining, only a fraction of spores (less than ~25% across all samples examined) had sufficient staining to clearly identify and count nuclei. For each slide with discernible nuclei, the number and position of nuclei were recorded for 10 conidia.

RESULTS

Phylogenetics.—To infer evolutionary relationships among sampled taxa, several phylogenetic analyses were performed. The three individual gene trees (28S, EFL, BTUB) as well as the concatenated 3-gene tree resolved *Massospora* as a monophyletic ingroup (FIG. 2). In a separate analysis, 18S placed *Md* among the outgroup taxa and the remainder of *Massospora* was left monophyletic (SUPPLEMENTARY FIG. 1). In all trees, *Md* resolved as a very long branch, and we attribute its occasional displacement to be a long-branch artifact, disproportionately based on signal from the 18S locus. A visual scan of all alignments indicated that differences between *Md* and other *Massospora* were distributed across all four loci, in a somewhat patchy distribution, with no indication of insertions, deletions, or alignment errors being the basis of its apparent divergence. This observation together with other indications that 18S performs poorly as a phylogenetic marker for fungi (Tang et al. 2007; Schoch et al. 2012; Demirel 2016) led us to remove 18S from the concatenated analysis (FIG. 2) (for 18S results, see: http://purl.org/phylo/treebase/phylows/study/TB2:S25818).

Two of three methods of phylogenetic inference for the 3-gene (28S+EFL+BTUB) concatenated data set resolved all five *Massospora* species into a strongly supported monophyletic group (FIG. 2). The third method of phylogenetic inference, MP, showed very weak bootstrap support (27%) for the genus (SUPPLEMENTARY FIG. 1; also at: http://purl.org/phylo/treebase/phylows/study/TB2:S25818). A follow-up MP analysis constraining *Massospora* to be monophyletic resulted in a tree 1259 steps in length (data not shown), only 4 steps longer than the unconstrained analysis. Three of the *Massospora* species, *Mc*, *Md*, and *Mt*, were genealogically exclusive and had strong bootstrap support. *Massospora levispora* and *M. platypediae* did not resolve as genealogically exclusive and instead together formed a single well-supported lineage. Within *Massospora*, *Mc* and *Md* formed a clade sister to the *Ml/Mp* lineage. *Massospora tettigatis* was recovered as the earliest diverging species of the species examined in this study.
Additional 28S sequences from specimens of *Mp* from *P. putnami* cicadas collected in 2013 in Colorado were compared using the National Center for Biotechnology Information (NCBI) BLAST with *Mp* 28S sequences used in the 3-gene concatenated data set. Isolates from Colorado were identical to isolates from California and New Mexico (SUPPLEMENTARY TABLE 2). Additional 28S sequences from specimens of *Mt* from three additional *Tettigades* spp. cicadas from Chile were compared using NCBI BLAST with *Mt* 28S sequences used in the 3-gene concatenated data set. These comparisons revealed that *Mt* is a single species capable of infecting diverse *Tettigates* species (SUPPLEMENTARY TABLE 2). These *Mp* and *Mt* isolates were excluded from the phylogenetic analyses due to insufficient sequence data for the other loci used.

Morphological study.—Morphological studies were conducted to permit comparisons between isolates used in this study and previously reported measurements (Soper 1963, 1974, 1981), as well as among species. Conidial and resting spore measurements were acquired from *Mp*-infected wing-banger cicadas (*Platypedia putnami*) from California and Colorado, *Mt*-infected *Tettigades* cicadas from Chile, and *Md*-infected *Diceroprocta* cicadas from Arizona. Raw spore measurements for *Mc*, *Mp*, and *Ml* previously reported by Boyce et al. (2019) were also included in this study.

Conidial measurements are summarized in FIG. 3, with raw spore measurements available in SUPPLEMENTARY TABLE 1. Mean, standard deviation, minimum, and maximum values for each species are reported in SUPPLEMENTARY TABLE 4. Each value is rounded to the nearest 0.5 µm. Conidial length measurements are presented as mean conidial length ± standard deviation for each species: *Mc* = 16.5 ± 2.0 µm, *Md* = 14.5 ± 2.0 µm, *Ml* = 14.5 ± 2.0 µm, *Mp* = 12.5 ± 2.0 µm, and *Mt* = 16.0 ± 2.0 µm. Conidial widths are reported in the same format as above and are as follows: *Mc* = 15.0 ± 1.5 µm, *Md* = 7.0 ± 1.0 µm, *Ml* = 9.0 ± 1.0 µm, *Mp* = 8.0 ± 1.0 µm, and *Mt* = 11.5 ± 1.0 µm. Comparisons of mean conidial lengths and widths among species and their statistical significance are shown in FIG. 3. Overall, mean conidial width was significantly affected by species (*P* < 0.001, Welch’s ANOVA), and each individual pairwise comparison was also significant (all *P* < 0.01, Games-Howell post hoc test). Mean conidial length was also significantly affected by species (*P* < 0.001, ANOVA), but mean lengths overlapped among several species (*Mt-Mc* *P* = 0.55, *Ml-Md* *P* = 1.00, *Mt-Md* *P* = 0.09, all others *P* < 0.01; Tukey’s post hoc test) (FIG. 3).

Unfortunately, our spore measurements cannot be statistically compared with those reported by Soper (1963, 1974, 1981) due to the fact that Soper only reported measurement means, minimums, and maximums, but not standard deviations or sample sizes (raw data are also unavailable). Regardless, our study found that all Soper’s mean conidial measurements fell within
our reported range for each Massospora species (SUPPLEMENTARY TABLE 4), but not always within 1 standard deviation of our mean: not for Md conidial length, Mp conidial length and width, or Mt conidial length and width.

Resting spore measurements are summarized in FIG. 3, with raw measurements available in SUPPLEMENTARY TABLE 1. Mean, standard deviation, minimum, and maximum values for each species are reported in SUPPLEMENTARY TABLE 4. Resting spore diameters are reported in the same format as above and are as follows: Mc = 42.5 ± 2.5 µm, Md = 38.0 ± 3.5 µm, Ml = 40.0 ± 2.0 µm, Mp = 38.5 ± 3.5 µm, and Mt = 44.0 ± 3.0 µm. Overall, mean resting spore diameter was significantly affected by species (P < 0.001, Welch’s ANOVA), but mean resting spore diameters overlapped among several species (Ml-Md P = 0.28, Mp-Md P = 1.00, Mp-Ml P = 0.44, all others P ≤ 0.02; Games-Howell post hoc test) (FIG. 3). Relative to Soper’s measurements, mean resting spore diameters fell within our reported range for Mc but not Ml and Mt, and not always within 1 standard deviation of our mean: not for Ml resting spore diameter or Mt resting spore diameter. Soper did not observe a resting spore stage for Md and Mp (SUPPLEMENTARY TABLE 4).

In addition to spore measurements, conidial plug color varied among species: Md plugs from specimens were violet to purple in color, compared with creamy white to brown plugs from all other species included in this study (FIG. 1).

Taxonomy.—Massospora levispora and M. platypediae formed an unresolved clade in phylogenetic reconstructions based on 18S, 28S, and EF1α, as well as the combined 4-gene tree and a previous work (Boyce et al. 2019), suggesting that these names should be considered synonyms. The two species were described from different hosts and different geographic areas: Massospora levispora was described from Okanaganana rimosa cicadas collected in Ontario, Canada (Soper 1963), whereas M. platypediae was described from Platypedia putnami cicadas collected in California, New Mexico, and Utah (Soper 1974). Hosts have often been considered important in species delimitation in Massospora, but host specificity has seldom been experimentally studied. Morphologically, Soper’s studies determined that Mp had uniform broadly ellipsoidal conidia with two bipolar nuclei, whereas Ml had less-uniform, ellipsoidal to ovoid conidia with 1–3 randomly distributed nuclei (SUPPLEMENTARY TABLE 5). No samples of Mp resting spore material were available at that time, but Ml resting spores were described as round, broadly and irregularly reticulate, and bearing many small rounded papillae discernible in scanning electron micrographs (Soper 1974) but not in light micrographs (Soper 1963) (SUPPLEMENTARY TABLE 5).

We observed that conidial dimensions for M. levispora and M. platypediae were significantly different (FIG. 3; SUPPLEMENTARY TABLES 4 and 5). Our observations confirmed the presence of ellipsoidal conidia in both species, but no ovoid conidia were observed in either species (FIG. 4). For both Ml and Mp, most conidia contained two medial nuclei (SUPPLEMENTARY TABLE 5). Bipolar large oil droplets were observed in some spores of both Ml and Mp. We observed for the first time the resting spores of M. platypediae. The spores were round with a finely reticulated rough epispore (FIG. 4). We could not determine whether papillae were present, due to the limitations of light microscopy. Comparing Ml and Mp resting sporangia, we found no significant difference in size (FIGS. 3, 4; SUPPLEMENTARY TABLES 4 and 5).

In summary, neither morphological nor phylogenetic analysis supports the recognition of two separate species; therefore, we propose the following synonymy: Massospora platypediae R.S. Soper, Mycotaxon 1:23. 1974.

DISCUSSION

In a recent study (Boyce et al. 2019), three species of Massospora were found to form a monophyletic group containing two genealogically exclusive lineages. In this work, we confirmed the monophyly of Massospora, even with the addition of two previously unavailable described Massospora species. At least four Massospora species are now well supported according to the criteria of genealogical concordance and nondiscordance (Taylor et al. 2000; Dettman et al. 2003).

The incongruence between spore morphology and molecular phylogenetics regarding the Ml/Mp lineage is intriguing. Ml conidia from O. rimosa are significantly longer (P < 0.01) and wider (P < 0.01), compared with Mp counterparts from P. putnami. Additionally, Soper’s mean conidial length and width measurements for Mp are not within 1 standard deviation of our measurements, nor are his resting spore measurements for Ml (SUPPLEMENTARY TABLE 4). The mountant used for spore measurements may affect spore shape and size, but it is not known what mountant was used by Soper (1963, 1974, 1981). Other studies of Entomophthorales used lactophenol, aceto-orcein, or lactic acid (Humber 1976; Soper et al. 1988; Gryganskyi et al. 2013; Hodge et al.
Differences among species (FIG. 3) and in comparison with Soper’s measurements (SUPPLEMENTARY TABLE 4) may also be due to differing sample ages and storage: in our study, *M. levispora* samples were stored in ethanol for 20 years, whereas *M. platypediae* samples were stored dry and only for a few years (Boyce et al. 2019; SUPPLEMENTARY TABLE 1). It is not known how Soper’s samples were stored or for how long (Soper 1963, 1974, 1981). One study examining sample age and mountant used in *Strongwellsea* found that these factors have an interacting effect on spore dimensions (Humber 1976). Sample size may also be important (n = 8 for *Ml*, n = 20 for *Mp*). Previous work by Boyce et al. (2019) used fewer populations of *Mp* (14 isolates from one population) and found considerable overlap in both conidial and resting spore measurements for *Mp* and *Ml*, although these measurements were not statistically compared. Taken together, these studies suggest that there may be population-level variation in *Mp* spore sizes, such that sampling too few populations will result in misleading conclusions. However, this does not explain the incongruence of our phylogenetic study and morphological study, with respect to *Mp* and *Ml*. Further sampling is needed.

Massospora diceroproctae was on an extremely long branch relative to the other *Massospora* species in both the 3-gene concatenated tree and the single-gene trees (FIG. 2), sometimes longer than even the total branch length separating the genus *Massospora* from the most distantly related outgroups. In several parsimony-derived trees, *Md* fell among the outgroups. Some of the incongruence between MP and the other methods of phylogenetic inference observed in this study can be explained by long branch attraction (LBA) (Felsenstein 1978) acting on the *Md* clade and the outgroup clade. This result is not entirely surprising, given that MP is often more susceptible to LBA than other phylogenetic methods (O’Connor et al. 2010). In the 3-gene ML and BI concatenated trees (http://purl.org/phylo/treebase/phylows/study/TB2:S25818), LBA cannot explain *Mc* and *Md* forming a clade, because *Mc* is not on a long branch in this study and did not appear on a long branch in Boyce et al. (2019) either, in a tree with only *Mc*, *Ml*, and *Mp*.

Figure 4. Composite of light microscopy images of *Massospora levispora* (A–C) and *M. platypediae* (D–F) conidia (A, D) and resting spores (B, C, E, F). Images shown not to scale. Conidia were mounted in hematoxylin, and resting spores were mounted in lactophenol. Isolates are ML7 (A), ML3 (B, C), CO11 (D), and NM11 (E, F).
One possible explanation for the long branch lengths and inconsistent resolution of Massospora in this study is that Md may have experienced an accelerated rate of molecular evolution compared with all other Massospora species. A second, perhaps more likely, explanation for long branches associated with Md is that the closest relatives of Md were not sampled here, due either to unavailability of samples, or their undiscovered status, or extinction. Only 5 of the 12 described Massospora species were available for this study, and there may also be undiscovered extant taxa that would disrupt the long branches associated with Md. Massospora is not the only member of the Entomophthorales where long branches have been observed: Batkoa was recovered on a longer branch compared with other taxa in two separate analyses (Gryganskyi et al. 2012; Hodge et al. 2017). Similar long-branch taxa have been observed in other early diverging fungi outside the Entomophthorales, which can be partially explained by the limited taxon sampling compared with members of Basidiomycota and Ascomycota (James et al. 2006b; Jones et al. 2011).

Two Massospora species treated in this study, Mt and M. levispora sensu lato, have cicada hosts both belonging to the subfamily Tibicinae, whereas the hosts of Md and Mc belong to two other subfamilies, Cicadinae and Cicadettinae, respectively (Sanborn 2013; Lukasik et al. 2018; Marshall et al. 2018). Our results indicate that all three cicada subfamilies are susceptible to Massospora, but Massospora has only been molecularly confirmed from cicadas in the New World. All three subfamilies contain dozens of genera and species that have never been formally surveyed for Massospora. Before cophylogenetic analyses of Massospora and their cicada hosts can be performed to test for evidence of parallel cladogenesis, the relationships among Massospora species need to be better resolved through the addition of more taxa and other loci.

Given the previous findings by Boyce et al. (2019) that two species of Massospora, Mc and M. levispora sensu lato, produce psychoactive compounds during host infection, and the findings of this study that within Massospora Md, Mc, and M. levispora sensu lato form a clade, Md is a likely candidate worth investigating for similar biologically active compounds. Observations of Md-infected Diceroprocta semicincta in Arizona revealed altered calling patterns in these cicadas despite continued mating attempts (Dr. DeAnna Bublitiz, personal observations). A separate personal observation of M. diceroproctae-infected Diceroprocta sp. by Dr. Jon Hastings from Big Bend National Park in Texas showed behavioral changes in infected individuals: elevated mating effort in terms of time spent signaling in males and increased likelihood to be in contact with a conspecific for males and females. Few observations exist on the behavior of Massospora-infected Tettigades cicadas, although Mt-infected cicadas continue mating attempts (Dr. Piotr Lukasik, personal observations). Collectively, these personal observations are intriguing, but more formal observations are needed to validate these findings.

The results of the morphological study presented here indicate that spore measurements may not be useful for species-level identifications. Unfortunately, the numbers of isolates sampled for many of these species were insufficient to confidently conclude whether differences truly exist. In general, trends observed across spore measurements were incongruent with the evolutionary relationships proposed by molecular phylogenetics. For example, comparisons between Mt isolates and Mp isolates uncovered significant differences in conidial length (P < 0.01) and width (P < 0.01) (FIG. 3) despite forming a single lineage based on multilocus sequence data (FIG. 2). However, resting spore diameter was not significantly different between Mt and Mp (P = 0.44).

In less than a decade, the research on Entomophthorales has grown significantly, leading to breakthrough discoveries on the biology and ecology of several members of this long-neglected group (Grell et al. 2011; Malagocka et al. 2015; De Fine Licht et al. 2017; Arnesen et al. 2018; Ely et al. 2018; Wronska et al. 2018; Boyce et al. 2019). Still, the vast majority of the Entomophthorales remain understudied. Despite recent advances in understanding the ecology of Massospora (Cooley et al. 2018; Boyce et al. 2019), much about the host range and diversity of this genus is yet to be discovered. The emerging phylogenetic framework for Massospora provides a starting point for coevolutionary studies with their cicada hosts and also lays a foundation for deciphering the evolution of behavior-altering compounds among Massospora and close allies.

FUNDING

A.M. was supported by The Ruby Distinguished Doctoral Fellows Program, Morgantown, West Virginia, P.L. by National Geographic Society grant 9760-15, J.E.S. by National Science Foundation grant DEB 1441715, and M.T. K. by funds from West Virginia Agricultural and Forestry Experiment Station. This publication is article no. 3376 of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia, USA.

ORCID

Angie M. Macias <http://orcid.org/0000-0002-2975-686X>
Jason E. Stajich <http://orcid.org/0000-0002-7591-0020>
LITERATURE CITED

Elya C, Lok TC, Spencer QE, McCausland H, Martinez CC, Eisen MB. 2018. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7:34414.

and species concepts in fungi. Fungal Genetics and Biology 31:21–32.